Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 1077-1087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284046

RESUMO

Klebsiella pneumoniae is an opportunistic Gram-negative pathogen causing nosocomial infections. K. pneumoniae rapidly acquires antibiotic resistance and is known as a reservoir for resistance genes. Polymyxins remain effective as a last-line therapy against infections caused by multidrug-resistant (MDR) K. pneumoniae; however, resistance to polymyxins emerges rapidly with monotherapy. Synergistic combinations of polymyxins with FDA-approved non-antibiotics are a novel approach to preserve its efficacy whilst minimising the emergence of polymyxin resistance in K. pneumoniae. This study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with the anti-fungal caspofungin against K. pneumoniae. The combination of polymyxin B and caspofungin showed marked synergistic antibacterial killing activity in checkerboard broth microdilution and static time-kill assays at clinically relevant concentrations at early (0.5 and 1 h) and later (4 h) time points. The potential bacterial killing mechanism of the combination was studied against K. pneumoniae FADDI-KP001 using metabolomics and transcriptomics studies at 0.5, 1 and 4 h. The key pathways involved in the synergistic killing action of the combination were cell wall assembly (peptidoglycan and lipopolysaccharide biosynthesis), central carbon metabolism (glycolysis, pentose phosphate pathway and tricarboxylic acid cycle) and fatty acid biosynthesis. Moreover, the combination inhibited the most common bacterial virulence pathway (phosphotransferase system) as well as the multi-resistant efflux mechanisms, including ATP-binding cassette (ABC) transporter pathway. Overall, this study sheds light on the possibility of a polymyxin-caspofungin combination for the treatment of infections caused by K. pneumoniae and may help repurpose FDA-approved caspofungin against MDR K. pneumoniae infections.

2.
Pharmaceutics ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547301

RESUMO

Hypermutable Pseudomonas aeruginosa strains have a greatly increased mutation rate and are prevalent in chronic respiratory infections. Initially, we systematically evaluated the time-course of total and resistant populations of hypermutable (PAO∆mutS) and non-hypermutable (PAO1) P. aeruginosa strains in 48-h static concentration time-kill studies with two inocula. Both strains were exposed to clinically relevant concentrations of important antibiotics (aztreonam, ceftazidime, imipenem, meropenem, tobramycin, and ciprofloxacin) in monotherapy. The combination of tobramycin and ciprofloxacin was subsequently assessed in 48-h static concentration time-kill studies against PAO1, PAO∆mutS, and two hypermutable clinical P. aeruginosa strains. Mechanism-based mathematical modelling was conducted to describe the time-course of total and resistant bacteria for all four strains exposed to the combination. With all monotherapies, bacterial regrowth and resistant populations were overall more pronounced for PAO∆mutS compared to PAO1. The combination of tobramycin and ciprofloxacin was synergistic, with up to 106.1 colony forming units (CFU)/mL more bacterial killing than the most active monotherapy for all strains, and largely suppressed less-susceptible populations. This work indicates that monotherapies against hypermutable P. aeruginosa strains are not a viable option. Tobramycin with ciprofloxacin was identified as a promising and tangible option to combat hypermutable P. aeruginosa strains.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30745381

RESUMO

Hypermutable Pseudomonas aeruginosa isolates (hypermutators) have been identified in patients with cystic fibrosis (CF) and are associated with reduced lung function. Hypermutators display a greatly increased mutation rate and an enhanced ability to become resistant to antibiotics during treatment. Their prevalence has been established among patients with CF, but it has not been determined for patients with CF in Australia. This study aimed to determine the prevalence of hypermutable P. aeruginosa isolates from adult patients with CF from a health care institution in Australia and to characterize the genetic diversity and antibiotic susceptibility of these isolates. A total of 59 P. aeruginosa clinical isolates from patients with CF were characterized. For all isolates, rifampin (RIF) mutation frequencies and susceptibility to a range of antibiotics were determined. Of the 59 isolates, 13 (22%) were hypermutable. Whole-genome sequences were determined for all hypermutable isolates. Core genome polymorphisms were used to assess genetic relatedness of the isolates, both to each other and to a sample of previously characterized P. aeruginosa strains. Phylogenetic analyses showed that the hypermutators were from divergent lineages and that hypermutator phenotype was mostly the result of mutations in mutL or, less commonly, in mutS Hypermutable isolates also contained a range of mutations that are likely associated with adaptation of P. aeruginosa to the CF lung environment. Multidrug resistance was more prevalent in hypermutable than nonhypermutable isolates (38% versus 22%). This study revealed that hypermutable P. aeruginosa strains are common among isolates from patients with CF in Australia and are implicated in the emergence of antibiotic resistance.


Assuntos
Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Adulto , Antibacterianos/uso terapêutico , Austrália , Proteínas de Bactérias/genética , Fibrose Cística/tratamento farmacológico , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Humanos , Mutação/genética , Filogenia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Rifampina/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-30104278

RESUMO

Hypermutable Pseudomonas aeruginosa organisms are prevalent in chronic respiratory infections and have been associated with reduced lung function in cystic fibrosis (CF); these isolates can become resistant to all antibiotics in monotherapy. This study aimed to evaluate the time course of bacterial killing and resistance of meropenem and ciprofloxacin in combination against hypermutable and nonhypermutable P. aeruginosa Static concentration time-kill experiments over 72 h assessed meropenem and ciprofloxacin in mono- and combination therapies against PAO1 (nonhypermutable), PAOΔmutS (hypermutable), and hypermutable isolates CW8, CW35, and CW44 obtained from CF patients with chronic respiratory infections. Meropenem (1 or 2 g every 8 h [q8h] as 3-h infusions and 3 g/day as a continuous infusion) and ciprofloxacin (400 mg q8h as 1-h infusions) in monotherapies and combinations were further evaluated in an 8-day hollow-fiber infection model study (HFIM) against CW44. Concentration-time profiles in lung epithelial lining fluid reflecting the pharmacokinetics in CF patients were simulated and counts of total and resistant bacteria determined. All data were analyzed by mechanism-based modeling (MBM). In the HFIM, all monotherapies resulted in rapid regrowth with resistance at 48 h. The maximum daily doses of 6 g meropenem (T>MIC of 80% to 88%) and 1.2 g ciprofloxacin (area under the concentration-time curve over 24 h in the steady state divided by the MIC [AUC/MIC], 176), both given intermittently, in monotherapy failed to suppress regrowth and resulted in substantial emergence of resistance (≥7.6 log10 CFU/ml resistant populations). The combination of these regimens achieved synergistic killing and suppressed resistance. MBM with subpopulation and mechanistic synergy yielded unbiased and precise curve fits. Thus, the combination of 6 g/day meropenem plus ciprofloxacin holds promise for future clinical evaluation against infections by susceptible hypermutable P. aeruginosa.


Assuntos
Ciprofloxacina/uso terapêutico , Fibrose Cística/tratamento farmacológico , Meropeném/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Antibacterianos/uso terapêutico , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Quimioterapia Combinada/métodos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana/métodos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Infecções Respiratórias/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-29437610

RESUMO

Hypermutable Pseudomonas aeruginosa strains are prevalent in patients with cystic fibrosis and rapidly become resistant to antibiotic monotherapies. Combination dosage regimens have not been optimized against such strains using mechanism-based modeling (MBM) and the hollow-fiber infection model (HFIM). The PAO1 wild-type strain and its isogenic hypermutable PAOΔmutS strain (MICmeropenem of 1.0 mg/liter and MICtobramycin of 0.5 mg/liter for both) were assessed using 96-h static-concentration time-kill studies (SCTK) and 10-day HFIM studies (inoculum, ∼108.4 CFU/ml). MBM of SCTK data were performed to predict expected HFIM outcomes. Regimens studied in the HFIM were meropenem at 1 g every 8 h (0.5-h infusion), meropenem at 3 g/day with continuous infusion, tobramycin at 10 mg/kg of body weight every 24 h (1-h infusion), and both combinations. Meropenem regimens delivered the same total daily dose. Time courses of total and less susceptible populations and MICs were determined. For the PAOΔmutS strain in the HFIM, all monotherapies resulted in rapid regrowth to >108.7 CFU/ml with near-complete replacement by less susceptible bacteria by day 3. Meropenem every 8 h with tobramycin caused >7-log10 bacterial killing followed by regrowth to >6 log10 CFU/ml by day 5 and high-level resistance (MICmeropenem, 32 mg/liter; MICtobramycin, 8 mg/liter). Continuous infusion of meropenem with tobramycin achieved >8-log10 bacterial killing without regrowth. For PAO1, meropenem monotherapies suppressed bacterial growth to <4 log10 over 7 to 9 days, with both combination regimens achieving near eradication. An MBM-optimized meropenem plus tobramycin regimen achieved synergistic killing and resistance suppression against a difficult-to-treat hypermutable P. aeruginosa strain. For the combination to be maximally effective, it was critical to achieve the optimal shape of the concentration-time profile for meropenem.


Assuntos
Antibacterianos/farmacologia , Meropeném/farmacologia , Modelos Teóricos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Tobramicina/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética
6.
J Antimicrob Chemother ; 71(11): 3157-3167, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27521357

RESUMO

OBJECTIVES: Hypermutable bacteria are causing a drastic problem via their enhanced ability to become resistant. Our objectives were to compare bacterial killing and resistance emergence between differently shaped tobramycin concentration-time profiles at a given fAUC/MIC, and determine the tobramycin exposure durations that prevent resistance. METHODS: Static concentration time-kill studies over 24 h used Pseudomonas aeruginosa WT strains (ATCC 27853 and PAO1) and hypermutable PAOΔmutS. fAUC/MIC values of 36, 72 and 168 were assessed at initial inocula of 106 and 104 cfu/mL (all strains) and 101.2 cfu/mL (PAOΔmutS only) in duplicate. Tobramycin was added at 0 h and removed at 1, 4, 10 or 24 h. Proportions of resistant bacteria and MICs were determined at 24 h. Mechanism-based modelling was conducted. RESULTS: For all strains, high tobramycin concentrations over 1 and 4 h resulted in more rapid and extensive initial killing compared with 10 and 24 h exposures at a given fAUC/MIC. No resistance emerged for 1 and 4 h durations of exposure, although extensive regrowth of susceptible bacteria occurred. The 24 h duration of exposure revealed less regrowth, but tobramycin-resistant populations had completely replaced susceptible bacteria by 24 h for the 106 cfu/mL inoculum. The hypermutable PAOΔmutS showed the highest numbers of resistant bacteria. Total and resistant bacterial counts were described well by novel mechanism-based modelling. CONCLUSIONS: Extensive resistance emerged for 10 and 24 h durations of exposure, but not for shorter durations. The tobramycin concentration-time profile shape is vital for resistance prevention and should aid the introduction of optimized combination regimens.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Fatores de Tempo
7.
J Antimicrob Chemother ; 70(3): 818-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25381167

RESUMO

OBJECTIVES: For fluoroquinolones, the area under the free plasma concentration-time curve divided by the MIC (fAUC/MIC) best predicts bacterial killing in mice and outcomes in patients. However, it is unknown whether the shape of the antibiotic concentration profile affects resistance emergence. Our objective was to compare killing and resistance between ciprofloxacin concentration profiles with different shapes at the same fAUC/MIC and identify the durations of ciprofloxacin exposure that minimize resistance emergence. METHODS: Static time-kill studies over 24 h using Pseudomonas aeruginosa ATCC 27853 assessed fAUC/MIC of 44 and 132 of ciprofloxacin (MICCIP = 0.25 mg/L) and fAUC/MIC of 22, 44 and 132 of ciprofloxacin plus an efflux pump inhibitor (MICCIP+EPI = 0.031 mg/L) at initial inocula of 10(4), 10(5) and 10(6) cfu/mL. Ciprofloxacin was added at 0 h and rapidly removed at 1, 4, 10, 16 or 24 h. Mutant frequencies and MICs were determined at 24 h. RESULTS: High ciprofloxacin concentrations over 1-10 h yielded more rapid and extensive initial killing compared with 16 and 24 h exposures at the same fAUC/MIC. No resistance emerged for 1-10 h exposures, although regrowth of susceptible bacteria was extensive. Ciprofloxacin exposure over 24 h yielded less regrowth, but ciprofloxacin-resistant bacteria at 5× MIC amplified by over 5 log10 and almost completely replaced the susceptible bacteria by 24 h; MICs increased 4- to 8-fold. Resistance also emerged on 3× MIC, but not 5× MIC, plates when efflux was inhibited. CONCLUSIONS: Pre-existing resistant subpopulations amplified extensively with 24 and 16 h exposures, but not with shorter durations. The shape of the ciprofloxacin concentration profile was critical to minimize resistance emergence.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Seleção Genética , Testes de Sensibilidade Microbiana , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...